ADDENDUM TO THE ARTICLE "THE STABILITY OF A SYSTEM OF PARALLEL
BOILING CHANNELS"*

## V. I. Budnikov and A. V. Sergievskii

Inzhenerno-Fizicheskii Zhurnal, Vol. 10, No. 4, pp., $550-551,1966$
UDC 536.423.1

In the above-mentioned article we made the following errors. In formulas (8) and (9) N should be written for $N^{3}$, i.e., (8) and (9) should read

$$
\begin{gather*}
-\overline{\Delta P}_{1}=\frac{2 V_{1}}{N} \sum_{j=1}^{N} \frac{\overline{\Delta W}_{\text {in } \cdot i}}{\left(W_{\text {in } \cdot j}\right)_{0}},  \tag{8}\\
{\overline{\Delta P_{3}}}=\frac{2 V_{2}}{N} \sum_{i=1}^{N} \frac{\overline{\Delta W}_{\text {out } \cdot i}}{\left(W_{\text {out } \cdot}\right)_{0}} \tag{9}
\end{gather*}
$$

Hence it follows that the parameters $\Phi_{12}$ and $\Phi_{22}$, which describe the stability of the system with respect to general fluctuations, evidently do not depend on parameter N

$$
\Phi_{12}=V_{1}+U_{1} ; \quad \Phi_{22}=V_{2}+U_{2} .
$$

Therefore the example given in the article of the dependence of the stability of a system on the number of channels is invalid. In the conditions of the example the stability is independent of the number of channels (when $N \geq 2$ ).

The stability of a system will depend on the number of channels, however, in the following case. Let us suppose that when the number of channels in the system is varied, the parameters describing the steady regime of each channel do not vary. We shall consider, further, that the heat carrier source and the steam consumer are turbulent resistances of constant value,

$$
\begin{aligned}
& P_{\mathbf{0}}(N)-P_{\mathbf{1}}=a\left(\sum_{j=1}^{N} W_{\text {in } \cdot j}\right)^{2} \quad(a=\text { const }), \\
& P_{\mathbf{3}}-P_{4}(N)=b\left(\sum_{j=1}^{N} W_{\text {out } \cdot j}\right)^{2} \quad(b=\text { const }) .
\end{aligned}
$$

Then

$$
\Phi_{12}=V_{1}^{\prime} N^{2}+U_{1} ; \quad \Phi_{22}=V_{2}^{\prime} N^{2}+U_{2},
$$

where $V_{1}^{\prime}$ and $V_{2}^{\prime}$ are the pressure drops in the heat carrier source and the steam consumer at a heat carrier flowrate equal to the nominal rate through one channel of the system.*

The stability conditions will take the form

$$
\left[\Phi_{22}(N), \Phi_{12}(N)\right] \in D_{0},\left[\Phi_{22}(0), \Phi_{12}(0)\right] \in D_{0}
$$

As $N$ varies from 0 to $\infty$, the points [ $\left.\Phi_{22}(N), \Phi_{12}(N)\right]$ are located on the arc

$$
\begin{gather*}
\Phi_{1}=\frac{V_{1}^{\prime}}{V_{2}^{\prime}} \Phi_{2}+\Phi_{12}(0)-\frac{V_{1}^{\prime}}{V_{2}^{\prime}} \Phi_{22}(0)  \tag{A}\\
U_{2} \leqslant \Phi_{\mathbf{2}} \leqslant P_{20} .
\end{gather*}
$$

Depending on the mutual position of arc (A) and the curve (11) in the plane ( $\Phi_{2}, \Phi_{1}$ ), the following possibilities may be realized:

1. The arc (A) lies wholly above the curve (11), and the system is stable for any N .
2. The arc (A) intersects the curve (11) once. Then: a) if the point $\mathrm{N}=1$ lies below the curve (11), the system is unstable for any $N$; b) if the point $N=1$ lies above the curve (11), the system is unstable when $\mathrm{N} \geq 2$.
3. The arc (A) intersects the curve (11) twice. Then the system is either stable for any N , or numbers $m_{1}$ and $m_{2}$ exist such that, when $m_{1}<N<m_{2}$ the system is unstable, and when $\mathrm{N}<\mathrm{m}_{1}$ and N$\rangle \mathrm{m}_{2}$ it is stable.
[^0]
[^0]:    *Since $P_{4} \geq 0, \Phi_{22} \leq P_{20}$. Hence the maximum possible number of channels in the example considered is $\mathrm{N}_{\text {max }} \leq E\left(\sqrt{\left(P_{20}-U_{2}\right) / V_{2}^{\prime}}\right)$.

